

PAT-003-010204

Seat No. _____

M. Sc. Chemistry (CBCS) (Sem. II) Examination August/September - 2020 Chemistry

C-204 : Analytical Chemistry (Old Course)

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions carry equal marks.
- (2) All questions are compulsory.
- 1 Answer the following: (any seven)
 - (a) Define:
 - (i) Mean error
- (ii) Deviation
- (iii) Variance
- (iv) Standard Deviation
- (b) What are organic particulates? How soot particles look?
- (c) What is the role of PTC in chemical reactions? Give its three names.
- (d) What is demand oxygen? Why it is determined in water sample?
- (e) Define Air pollution and give their name and sources of originate.
- (f) The analysis of calcite sample yielded CaO% of 55.95, 56.00, 5,6-04, 56.08 and 56.23. The last value appears anomolous, should it be retained or rejected ? $[Q_{Tab} = 0.64]$.
- (g) Define green chemistry. Give its importance and name of techniques for syntheses in green chemistry.
- (h) The percentage of a constituent A in a compound AB were found to be 48.32, 48.36, 48.23, 48.11 and 48.38%. Calculate the mean deviation and the relative mean deviation.
- (i) How will you determine chloride in water sample? Give the name of method, chemical used and chemical reaction for the method.
- (j) Define: Confidence level, t-test, F-test and accuracy.

- 2 Answer the following: (any two)
 - (a) Following values were recorded for the potential E of an electrode measured against the saturated calomel electrode as a function of concentration C (mole/lit)

 Fit the best straight line to these data.

$-\log CX$	1.0	1.10	1.20	1.50	1.70	1.90	2.10	2.20	2.40	2.70	2.90	3.0
E, mV, Y	106	115	121	139	153	158	174	182	187	211	220	226

- (b) How will you determine dissolved oxygen? Give the procedure with chemical reactions.
- (c) How will you determine hardness of water? Give the principle, procedure and chemical reactions.
- 3 Answer the following:
 - (a) A method for determining the particulate nitrate content of air sample is based upon drawing a measured quantity of air through a filter and performing the analysis of circles out from the filter. Calculate the individual values for S as well as a pooled value for the accompanying data.

Sample	μg , NO_2/m^3 air
1	1.6, 1.2, 1.3
2	2.0, 2.2, 2.3, 2.2
3	1.8, 1.7, 1.4, 1.6
4	1.6, 1.3, 1.2, 1.5, 1.6

(b) Describe the chemistry of photochemical smog with relevant equations.

OR

(a) A new method for the analysis of Hg was tested against an ore sample that was known to assay 12.63% Hg.

Trial	1	2	3	4	5
% Hg	12.76	12.57	12.72	12.79	12.76

- (i) Calculate the standard deviations S for these data.
- (ii) Calculate the 95% confidence interval for the analysis [For 95% level t = 2.78]

- (iii) Is the assay mean within the bounds of
 - (a) the 95% confidence interval
 - (b) the 80% confidence interval?

[as 80% level t = 1.53]

- (b) Write twelve principles of green chemistry and explain any three in detail.
- 4 Answer the following:
 - (a) How will you determine nitrogen, acidity and alkalinity in water sample ?
 - (b) What is error? Discuss types of errors and normal error curve.
- 5 Answer the following: (any two)
 - (a) How will you determine total organic carbon? Give the principle and procedure for its determination.
 - (b) What is microwave radiation reaction? Discuss its role in organic synthesis with suitable example.
 - (c) The following data were obtained in calibrating a colorimetry for the determination of trace amount of iron in aqueous solution.

Fe ppm Xi 0.510	1.020	1.530	2.040	2.556	3.060	3.570	4.080	4.590	5.100
Colorimetry Reading Yi 8.2	15.1	18.0	23.7	32.1	36.4	45.0	49.6	56.1	61.2

- (i) Fit the best straight line.
- (ii) Calculate the concentration of solution that yielded reading of 9.9 and 43.7.
- (d) Discuss earth atmospheric system energy balance with diagram.
